Sorry, you need to enable JavaScript to visit this website.

Machine learning: ayuda a estimar el riesgo cardiovascular

Versión para impresiónPDF version
Fuente: 
TyN Magazine

Como seres humanos, siempre buscamos evitar los riesgos y saber cuándo estos se podrían presentar en nuestras vidas. A pesar de lo anterior, algo tan propio como el cuerpo muchas veces se escapa de nuestros cálculos, sobre todo a la hora de anticipar enfermedades.

 

Pensando en esto, un grupo de científicos del MIT desarrollo un nuevo sistema que permite predecir condiciones de salud, a través de un modelo de machine learning que puede estimar, a partir de la actividad eléctrica del corazón, el nivel de riesgo de un paciente de morir un por un problema cardiovascular.

 

El sistema llamado “RiskCardio”, se enfoca en pacientes que hayan sufrido de Síndrome Coronario Agudo, donde al realizarles un electrocardiograma el software genera una puntuación con la data obtenida durante los primeros 15 minutos del examen. Con este resultado se ubica al paciente en una de cuatro categorías, que van desde menor a mayor nivel de riesgo.

 

La idea es poder combinar información a lo largo del tiempo e ir comparando las puntuaciones que se obtienen regularmente, para de esa forma ayudar a los doctores a identificar a las personas con mayor nivel de riesgo por un problema cardiovascular, por medio de tecnologías como la computación”, asegura Marcelo Sukni, gerente general de SAS Chile.

 

Hasta el momento, el uso de machine learning solo permitía realizar estimaciones de riesgo con información externa de los pacientes, como por ejemplo el peso, y eso combinarlo con otras aplicaciones, mientras que con el desarrollo de RiskCardio solo es necesario la señal del electrocardiograma.

 

Este software busca mejorar la etapa de detección, separando la señal eléctrica del paciente en sets consecutivos de latidos, ya que las variaciones entre latidos indican un corazón más saludable.

 

De esta manera, los médicos incluso podrían tardar menos en evaluaciones largas y así recomendar tratamientos personalizados y eficientes a quienes tengan mayor riesgo de tener problemas cardiacos. 

 

 

Disponible en :

https://www.tynmagazine.com/machine-learning-ayuda-a-estimar-el-riesgo-c...

Gobierno Electrónico
Fuente: 
Tomado del Bolg La pupila insomne por Omar Pérez Salomón
El 2018 pasará a la historia como el año en que se tomaron importantes decisiones en el campo de la comunicación en Cuba. Se aprobó...
Ministro de Comunicaciones entre los nuevos diputados a la ANPP
Fuente: 
Ministro de Comunicaciones entre los nuevos diputados a la ANPP
En el Palacio de Convenciones de La Habana, este 19 de diciembre, en la jornada de estudio del #ProyectoDeConstitución, tomaron posesión los nuevos 8 diputados...
 Jorge Luis Perdomo Di-Lella
Fuente: 
Tomado de Cubadebate
La Asamblea Nacional del Poder Popular (ANPP) se reúne hoy en plenario para informar a los diputados acerca de la informatización de la sociedad y...

Publicar nuevo comentario

To prevent automated spam submissions leave this field empty.
Image CAPTCHA